Abstract

Considering the deeper reasons of the appearance of a remarkable counterexample by Kaad and Skeide (J Operat Theory 89(2):343–348, 2023) we consider situations in which two Hilbert C*-modules M⊂N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$M \\subset N$$\\end{document} with M⊥={0}\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$M^\\bot = \\{ 0 \\}$$\\end{document} over a fixed C*-algebra A of coefficients cannot be separated by a non-trivial bounded A-linear functional r0:N→A\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$r_0: N \\rightarrow A$$\\end{document} vanishing on M. In other words, the uniqueness of extensions of the zero functional from M to N is focussed. We show this uniqueness of extension for any such pairs of Hilbert C*-modules over W*-algebras, over monotone complete C*-algebras and over compact C*-algebras. Moreover, uniqueness of extension takes place also for any one-sided maximal modular ideal of any C*-algebra. Such a non-zero separating bounded A-linear functional r0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$r_0$$\\end{document} exist for a given pair of full Hilbert C*-modules M⊆N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$M \\subseteq N$$\\end{document} over a given C*-algebra A iff there exists a bounded A-linear non-adjointable operator T0:N→N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$T_0: N \\rightarrow N$$\\end{document}, such that the kernel of T0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$T_0$$\\end{document} is not biorthogonally closed w.r.t. N and contains M. This is a new perspective on properties of bounded modular operators that might appear in Hilbert C*-module theory. By the way, we find a correct proof of Lemma 2.4 of Frank (Int J Math 13:1–19, 2002) in the case of monotone complete and compact C*-algebras, but find it not valid in certain particular cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call