Abstract
Abstract Given two nondegenerate Borel probability measures $\mu$ and $\nu$ on ${\mathbb{R}}_{+}=[0,\infty )$, we prove that their free multiplicative convolution $\mu \boxtimes \nu$ has zero singular continuous part and its absolutely continuous part has a density bounded by $x^{-1}$. When $\mu$ and $\nu$ are compactly supported Jacobi measures on $(0,\infty )$ having power law behavior with exponents in $(-1,1)$, we prove that $\mu \boxtimes \nu$ is another Jacobi measure whose density has square root decay at the edges of its support.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.