Abstract
We consider quasilinear parabolic systems of equations with nondiagonal principal matrices. The oblique derivative of a solution is defined on the plane part of the lateral surface of a parabolic cylinder. We do not assume smoothness of the principal matrix and the boundary functions in the time variable and prove partial Holder continuity of a weak solution near the plane part of the lateral surface of the cylinder. Holder continuity of weak solutions to the correspondent linear problem is stated. A modification of the A(t)-caloric approximation method is applied to study the regularity of weak solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.