Abstract

ABSTRACTIn this paper we deal with the problem of existence of a smooth solution of the Hamilton–Jacobi–Bellman–Isaacs (HJBI for short) system of equations associated with nonzero-sum stochastic differential games. We consider the problem in unbounded domains either in the case of continuous generators or for discontinuous ones. In each case we show the existence of a smooth solution of the system. As a consequence, we show that the game has smooth Nash payoffs which are given by means of the solution of the HJBI system and the stochastic process which governs the dynamic of the controlled system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.