Abstract

A recently proposed alternative to multifractional Brownian motion (mBm) with random Hurst exponent is studied, which we refer to as Itô-mBm. It is shown that Itô-mBm is locally self-similar. In contrast to mBm, its pathwise regularity is almost unaffected by the roughness of the functional Hurst parameter. The pathwise properties are established via a new polynomial moment condition similar to the Kolmogorov–Centsov theorem, allowing for random local Hölder exponents. Our results are applicable to a broad class of moving average processes where pathwise regularity and long memory properties may be decoupled, e.g. to a multifractional generalization of the Matérn process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.