Abstract

Local Lipschitz continuity of local minimizers of vectorial integrals ∫Ω f(x, Du)dx is proved when f satisfies p‐q growth condition and ξ ↦ f(x, ξ) is not convex. The uniform convexity and the radial structure condition with respect to the last variable are assumed only at infinity. In the proof, we use semicontinuity and relaxation results for functionals with nonstandard growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.