Abstract

We study the regularity of harmonic maps from Riemannian manifold into a static Lorentzian manifold. We show that when the domain manifold is two-dimensional, any weakly harmonic map is smooth. We also show that when dimension n of the domain manifold is greater than two, there exists a weakly harmonic map for the Dirichlet problem which is smooth except for a closed set whose (n − 2)-dimensional Hausdorff measure is zero.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.