Abstract

We consider the semilinear elliptic equation $ -\Delta u =\lambda f(u) $ in a smooth bounded domain $ \Omega $ of $ \Bbb{R}^{n} $ with Dirichlet boundary condition, where $ f $ is a $ C^{1} $ positive and nondeccreasing function in $ [0, \infty) $ such that $ \frac{f(t)}{t} \rightarrow \infty $ as $ t \rightarrow \infty $. When $ \Omega $ is an arbitrary domain and $ f $ is not necessarily convex, the boundedness of the extremal solution $ u^{*} $ is known only for $ n = 2 $, established by X. Cabré[5]. In this paper, we prove this for higher dimensions depending on the nonlinearity $ f $. In particular, we prove that if \begin{document}$ \frac{1}{2} < \beta_{-}:=\liminf\limits_{t\rightarrow\infty} \frac{f'(t)F(t)}{f(t)^{2}}\leq \beta_{+}:=\limsup\limits_{t\rightarrow\infty} \frac{f'(t)F(t)}{f(t)^{2}} < \infty, $ \end{document} where $ F(t)=\int_{0}^{t}f(s)ds $, then $ u^{*} \in L^{\infty}(\Omega) $, for $ n \leq 6 $. Also, if $\beta_{-}=\beta_{+}>\frac{1}{2} $ or $ \frac{1}{2} < \beta_{-}\leq \beta_{+} < \frac{7}{10} $, then $ u^{*} \in L^{\infty}(\Omega) $, for $ n \leq 9 $. Moreover, under the sole condition that $ \beta_{-} > \frac{1}{2} $ we have $ u^{*} \in H^{1}_{0}(\Omega) $ for $ n \geq 1 $. The same is true if for some $ \epsilon > 0 $ we have \begin{document}$$$ \frac{tf'(t)}{f(t)} \geq 1+\frac{1}{(\ln t)^{2-\epsilon}} ~~ \text{for large} ~ t, $$$ \end{document} which improves a similar result by Brezis and Vázquez [4].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call