Abstract

We study the behavior of solutions to the Dirichlet problem for the p(x)-Laplacian with a continuous boundary function. We prove the existence of a weak solution under the assumption that p is separated from 1 and ∞. We present a necessary and sufficient Wiener type condition for regularity of a boundary point provided that the exponent p has the logarithmic modulus of continuity at this point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.