Abstract

We investigate a quasilinear elliptic equation with variable growth in a bounded nonsmooth domain involving a signed Radon measure. We obtain an optimal global Calderón–Zygmund type estimate for such a measure data problem, by proving that the gradient of a very weak solution to the problem is as globally integrable as the first order maximal function of the associated measure, up to a correct power, under minimal regularity requirements on the nonlinearity, the variable exponent and the boundary of the domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.