Abstract

We present a new and innovative logic synthesis approach using regularity information of a design to selectively apply transformations and globally guide the synthesis process. Since traditional logic synthesis applies transformations without consideration of global design characteristics such as regularity and dataflow, it destroys a substantial amount of regular structures. In addition, due to the non-incremental nature of most logic transformations, synthesis relies vastly on the computationally expensive concept of trial and error application of transformations, a time-consuming process in the synthesis of large designs. The proposed approach addresses both shortcomings of traditional logic synthesis and describes a mechanism to speed up logic synthesis and preserve regularity. It selectively applies transformations to places with similar characteristics and to the same stage of a regular structure, introducing a notion of dataflow-aware synthesis. Preservation of regular structures has tremendous advantages to the following physical design stages. It yields high-density layouts, shorter wiring length and improved delay. In addition, the layout becomes more predictable at an earlier design stage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.