Abstract

The human cerebral cortex is folded into two fundamentally anatomical units: gyri and sulci. Previous studies have demonstrated the genetical, structural, and functional differences between gyri and sulci, providing a unique perspective for revealing the relationship among brain function, cognition, and behavior. While previous studies mainly focus on the functional differences between gyri and sulci under resting or task-evoked state, such characteristics under naturalistic stimulus (NS) which reflects real-world dynamic environments are largely unknown. To address this question, this study systematically investigates spatio-temporal functional connectivity (FC) characteristics between gyri and sulci under NS using a spatio-temporal graph convolutional network model. Based on the public Human Connectome Project dataset of 174 subjects with four different runs of both movie-watching NS and resting state 7T functional MRI data, we successfully identify unique FC features under NS, which are mainly involved in visual, auditory, emotional and cognitive control, and achieve high discriminative accuracy 93.06 % to resting state. Moreover, gyral regions as well as gyro-gyral connections consistently participate more as functional information exchange hubs than sulcal ones among these networks. This study provides novel insights into the functional brain mechanism under NS and lays a solid foundation for accurately mapping the brain anatomy-function relationship.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.