Abstract

We study the coordinate ring of an $L$-convex polyomino, determine its regularity in terms of the maximal number of rooks that can be placed in the polyomino. We also characterize the Gorenstein $L$-convex polyominoes and those which are Gorenstein on the punctured spectrum, and compute the Cohen–Macaulay type of any $L$-convex polyomino in terms of the maximal rectangles covering it. Though the main results are of algebraic nature, all proofs are combinatorial.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.