Abstract
We prove a version of Warner’s regularity and continuity properties for the sub-Riemannian exponential map. The regularity property is established by considering sub-Riemannian Jacobi fields while the continuity property follows from studying the Maslov index of Jacobi curves. We finally show how this implies that the exponential map of the three-dimensional Heisenberg group is not injective in any neighbourhood of a conjugate vector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.