Abstract

We report a comparative study of single-layer (TiAlCrSiY)N and multilayer (TiAl-CrSiY)N/(TiAlCr)N PVD coatings on cutting tools during the break-in stage of high-speed dry cutting. Phase and chemical composition of tribooxides forming in the coating wear area were studied by X-ray photoelectron spectroscopy. It is shown that amorphous oxide films with a thickness of several dozen angstroms contain phases with a chemical composition close to mullite, sapphire, rutile, and chromium oxide. As a result of selective wear, the contact surface of the coatings retains the most durable tribooxides carrying out protective functions. Low-cycle fatigue resistance is studied using the cyclic microindentation technique. Fractal analysis of time-resolved indenter penetration depth curves combined with scanning electron microscopy (SEM) demonstrates phenomenological regularities of coatings’ damageability at the early stage of wear. It is shown that, in comparison with single-layer (TiAlCrSiY)N, the nucleation and growth of microcracks in a multilayer (TiAlCrSiY)N/(TiAlCr)N coating is accompanied by acts of microplastic deformation providing a higher fracture toughness of the (TiAlCrSiY)N/(TiAlCr)N multilayer nanocomposite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.