Abstract

The value of the motion resistance is one of the important characteristics that determines the technical and operational properties of the vehicle, in particular its fuel economy under operating conditions. This article summarizes the approaches to determining the rolling resistance of a wheeled vehicle in straight motion, which is a separate case from curved motion. The value of this parameter is one of the vehicle components of the motion resistance along a curved path. The regularities of changes in the motion resistance of a two-axle wheeled vehicle along a curvilinear trajectory are determined based on the determination of the motion resistance of individual wheels, which considers resistance to rectilinear motion and additional resistance along a curved path caused by the twisting and lateral displacement of the wheel disc relative to the tire patch. Analytical dependences of changes in the motion resistance along a curvilinear trajectory of two-axle vehicles with the design features of transmission, placement of tires, and their characteristics were obtained. It was found that reducing the radius of curvature of the trajectory to the minimum turning radius increases the motion resistance coefficient for the investigated vehicles by 1.68−2.04 times in relation to the rolling resistance coefficient in straight motion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call