Abstract
We prove both geometric ergodicity and regular variation of the stationary distribution for a class of nonlinear stochastic recursions that includes nonlinear AR-ARCH models of order 1. The Lyapounov exponent for the model, the index of regular variation and the spectral measure for the regular variation all are characterized by a simple two-state Markov chain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.