Abstract
We show that the finite-dimensional distributions of a GARCH process are regularly varying, i.e., the tails of these distributions are Pareto-like and hence heavy-tailed. Regular variation of the joint distributions provides insight into the moment properties of the process as well as the dependence structure between neighboring observations when both are large. Regular variation also plays a vital role in establishing the large sample behavior of a variety of statistics from a GARCH process including the sample mean and the sample autocovariance and autocorrelation functions. In particular, if the 4th moment of the process does not exist, the rate of convergence of the sample autocorrelations becomes extremely slow, and if the second moment does not exist, the sample autocorrelations have non-degenerate limit distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.