Abstract
We describe intrinsically regular submanifolds in Heisenberg groups H n . Low dimensional and low codimensional submanifolds turn out to be of a very different nature. The first ones are Legendrian surfaces, while low codimensional ones are more general objects, possibly non-Euclidean rectifiable. Nevertheless we prove that they are graphs in a natural group way, as well as that an area formula holds for the intrinsic Hausdorff measure. Finally, they can be seen as Federer–Fleming currents given a natural complex of differential forms on H n .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.