Abstract
A fundamental problem with the Nash equilibrium concept is the existence of certain “structurally deficient” equilibria that (i) lack fundamental robustness properties, and (ii) are difficult to analyze. The notion of a “regular” Nash equilibrium was introduced by Harsanyi. Such equilibria are isolated, highly robust, and relatively simple to analyze. A game is said to be regular if all equilibria in the game are regular. In this paper it is shown that almost all potential games are regular. That is, except for a closed subset with Lebesgue measure zero, all potential games are regular. As an immediate consequence of this, the paper also proves an oddness result for potential games: In almost all potential games, the number of Nash equilibrium strategies is finite and odd. Specialized results are given for weighted potential games, exact potential games, and games with identical payoffs. Applications of the results to game-theoretic learning are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.