Abstract

The Elenbaas-Heller equation is nondimensionalized and solved using regular perturbation theory to provide closed-form analytical solutions to describe structures of cylindrically symmetrical steady electric arc discharges with negligible radiant heat transfer. Based on available data, it is assumed that the electrical conductivity varies with the heat-flux potential in an Arrhenius fashion. The leading-order solution is equivalent to an asymptotic solution proposed by Kuiken [J. Appl. Phys. 58, 1833 (1991)]. Higher-order terms are also derived in the present paper, and it is shown that quantitatively accurate analytical solutions can be developed when higher-order terms are included. Analysis shows that appreciable Joule heating is restricted to an inner zone when a dimensionless parameter is large relative to unity, leading to arc-channel models suggested by previous investigators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.