Abstract
AbstractKotzig asked in 1979 what are necessary and sufficient conditions for a d‐regular simple graph to admit a decomposition into paths of length d for odd d>3. For cubic graphs, the existence of a 1‐factor is both necessary and sufficient. Even more, each 1‐factor is extendable to a decomposition of the graph into paths of length 3 where the middle edges of the paths coincide with the 1‐factor. We conjecture that existence of a 1‐factor is indeed a sufficient condition for Kotzig's problem. For general odd regular graphs, most 1‐factors appear to be extendable and we show that for the family of simple 5‐regular graphs with no cycles of length 4, all 1‐factors are extendable. However, for d>3 we found infinite families of d‐regular simple graphs with non‐extendable 1‐factors. Few authors have studied the decompositions of general regular graphs. We present examples and open problems; in particular, we conjecture that in planar 5‐regular graphs all 1‐factors are extendable. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 114–128, 2010
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.