Abstract
In this paper, a numerical method is developed to calculate deformations and stresses of the body of dry gas holders under gas pressure. The deformations of the wall plates are decomposed into out-of-plane bending and in-plane deformation. The out-of-plane bending of the wall plates is described by the theory of orthotropic plates and the in-plane deformation by the biharmonic equation of flat plates under plane stress. The theories of beam columns and beams are employed to analyze the columns and corridors, respectively. By considering compatibility conditions between the members and boundary conditions, equations for the determination of deformations and stresses of dry gas holders under gas pressure are obtained. Both the proposed approach and the finite element method are used to investigate the deformations and stresses of the body of a dry gas holder under gas pressure. The results from the proposed method agree with those from the finite element method. Because far fewer unknowns are involved, the proposed method is computationally more efficient than both the finite element method and the series method developed from the theory of stiffened plates.Key words: numerical approach, body of dry gas holders, gas pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.