Abstract
We investigate the problem of packing identical hard objects on regular lattices in d dimensions. Restricting configuration space to parallel alignment of the objects, we study the densest packing at a given aspect ratio X. For rectangles and ellipses on the square lattice as well as for biaxial ellipsoids on a simple cubic lattice, we calculate the maximum packing fraction φ(d)(X). It is proved to be continuous with an infinite number of singular points X(ν)(min), X(ν)(max), ν = 0, ±1, ±2,…. In two dimensions, all maxima have the same height, whereas there is a unique global maximum for the case of ellipsoids. The form of φ(d)(X) is discussed in the context of geometrical frustration effects, transitions in the contact numbers, and number-theoretical properties. Implications and generalizations for more general packing problems are outlined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.