Abstract

The study of the strange nonchaotic attractors is an interesting topic, where the dynamics are neither regular nor chaotic (the word chaotic means the positive Lyapunov exponents), and the shape of the attractors has complicated geometry structure, or fractal structure. It is found that in a class of planar first-order nonautonomous systems, it is possible that there exist attractors, where the shape of the attractors is regular, the orbits are transitive on the attractors, and the dynamics are not chaotic. We call this type of attractors as regular nonchaotic attractors with positive plural, which are different from the strange nonchaotic attractors, attracting fixed points, or attracting periodic orbits. Several examples with computer simulations are given. The first two examples have annulus-shaped attractors. Another two examples have disk-shaped attractors. The last two examples with externally driven terms at two incommensurate frequencies have regular nonchaotic attractors with positive plural, implying that the existence of externally driven terms at two incommensurate frequencies might not be the sufficient condition to guarantee that the system has strange nonchaotic attractors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.