Abstract
Hartvigsen and Zemel have obtained a characterization of those graphs which have every circuit basis fundamental. We consider the corresponding problem for binary matroids. We show that, in general, the class of binary matroids for which every circuit basis is fundamental is not closed under the taking of minors. However, this class is closed under the taking of series-minors. We also describe some general properties of this class of matroids. We end by extending Hartvigsen and Zemel's result to the class of regular matroids, thus obtaining a set of excluded minors which are graphic for this class. © 1996 John Wiley & Sons, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.