Abstract
We prove that the extension complexity of the independence polytope of every regular matroid on [Formula: see text] elements is [Formula: see text]. Past results of Wong and Martin on extended formulations of the spanning tree polytope of a graph imply a [Formula: see text] bound for the special case of (co)graphic matroids. However, the case of a general regular matroid was open, despite recent attempts. We also consider the extension complexity of circuit dominants of regular matroids, for which we give a [Formula: see text] bound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.