Abstract
It is well known that the class of regular languages coincides with the class of languages recognized by finite automata. Nevertheless, many other characterizations of this class in terms of computational devices and generative models are present in the literature. For example, by suitably restricting more powerful models such as context-free grammars, pushdown automata, and Turing machines, it is possible to obtain formal models that generate or recognize regular languages only. These restricted formalisms provide alternative representations of regular languages that may be significantly more concise than other models that share the same expressive power. The goal of this work is to provide an overview of old and recent results on these formal systems from a descriptional complexity perspective, that is by considering the relationships between the sizes of such devices. We also present some results related to the investigation of the famous question posed by Sakoda and Sipser in 1978, concerning the size blowups from nondeterministic finite automata to two-way deterministic finite automata.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.