Abstract

This paper is the paper announced in [Be2, References [2]]. We show that every compact abelian group of homeomorphisms of $\mathbb{R}^3$ is either zero-dimensional or equivalent to a subgroup of the orthogonal group O(3). We prove a similar result if we replace $\mathbb{R}^3$ by $\mathbb{S}^3$, and we study regular homeomorphisms that are conjugate to their inverses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.