Abstract
A particular kind of 2-cell imbedding for a class of edge-coloured graphs into surfaces with boundary is introduced and studied. This allows to define, as in [13], where the closed case was traited, a pair of invariants — the regular genus and the hole-number — for every n-manifold with boundary. These invariants are proved to coincide with the classical ones in dimension two, and to be strictly related with a Heegaard-like handlebody decomposition in dimension three. A characterization of 261-1 concludes the work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.