Abstract
The paper is devoted to proving an existence and uniqueness result for generalized solutions to semilinear wave equations with a small nonlinearity in space dimensions 1, 2, 3. The setting is the one of Colombeau algebras of generalized functions. It is shown that for a nonlinearity of arbitrary growth and sign, but multiplied with a small parameter, the initial value problem for the semilinear wave equation has a unique solution in the Colombeau algebra of generalized functions of bounded type. The proof relies on a fixed point theorem in the ultra-metric topology on the algebras involved. In classical terms, the result says that the semilinear wave equations under consideration have global classical solutions up to a rapidly vanishing error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.