Abstract
This paper is devoted to the construction of order reduced method of fourth order problems. A constructive framework is presented such that a problem on the high-regularity space can be deduced to an equivalent system on three low-regularity spaces which are connected by a regular decomposition corresponding to a decomposition of the regularity of the high order space. The generated numerical schemes based on the deduced problems can be of lower complicacy, and the framework is fit for various fourth order problems. Three fourth order problems are then discussed under the framework, including one in two dimension and two in three dimension. They are each corresponding to a regular decomposition, and thus are discretised based on the discretised analogues of the regular decomposition; optimal error estimates are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.