Abstract

Introduction. A regular curve on a Riemannian manifold is a curve with a continuously turning nontrivial tangent vector.(2) A regular homotopy is a homotopy which at every stage is a regular curve, keeps end points and directions fixed and such that the tangent vector moves continuously with the homotopy. A regular curve is closed if its initial point and tangent coincides with its end point and tangent. In 1937 Hassler Whitney [17] classified the closed regular curves in the plane according to equivalence under regular homotopy. The main goal of this work is to extend this result to regular curves on Riemannian manifolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.