Abstract
We show that the regularity of a boundary point for a parabolic differential operator in divergence form is under some geometric assumptions equivalent to the property that the density of the exit distribution for a time reversed process vanishes at that point. We give regularity and irregularity criterions for equations with variable coefficients. Thus, the known result on the Fulks measure that states that the density with respect to the Lebesgue measure vanishes at the point opposite to the center of the heat ball (see Fulks (Proc. Am. Math. Soc. 17, 6–11 1966)) can be extended to exit distributions for more general regions and parabolic differential operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.