Abstract

We address the question of regular primordial black holes with de Sitter interior, their remnants and gravitational vacuum solitons G-lumps as heavy dark matter candidates providing signatures for inhomogeneity of early universe, which is severely constrained by the condition that the contribution of these objects in the modern density does not exceed the total density of dark matter. Primordial black holes and their remnants seem to be most elusive among dark matter candidates. However, we reveal a nontrivial property of compact objects with de Sitter interior to induce proton decay or decay of neutrons in neutron stars. The point is that they can form graviatoms, binding electrically charged particles. Their observational signatures as dark matter candidates provide also signatures for inhomogeneity of the early universe. In graviatoms, the cross-section of the induced proton decay is strongly enhanced, what provides the possibility of their experimental searches. We predict proton decay paths induced by graviatoms in the matter as an observational signature for heavy dark matter searches at the IceCUBE experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call