Abstract

AbstractA labeling of a graph G is a bijection from E(G) to the set {1, 2,… |E(G)|}. A labeling is antimagic if for any distinct vertices u and v, the sum of the labels on edges incident to u is different from the sum of the labels on edges incident to v. We say a graph is antimagic if it has an antimagic labeling. In 1990, Hartsfield and Ringel conjectured that every connected graph other than K2 is antimagic. In this article, we show that every regular bipartite graph (with degree at least 2) is antimagic. Our technique relies heavily on the Marriage Theorem. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 173–182, 2009

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.