Abstract
Abstract For a connected reductive group G defined over a non-archimedean local field F, we consider the Bernstein blocks in the category of smooth representations of G ( F ) {G(F)} . Bernstein blocks whose cuspidal support involves a regular supercuspidal representation are called regular Bernstein blocks. Most Bernstein blocks are regular when the residual characteristic of F is not too small. Under mild hypotheses on the residual characteristic, we show that the Bernstein center of a regular Bernstein block of G ( F ) {G(F)} is isomorphic to the Bernstein center of a regular depth-zero Bernstein block of G 0 ( F ) {G^{0}(F)} , where G 0 {G^{0}} is a certain twisted Levi subgroup of G. In some cases, we show that the blocks themselves are equivalent, and as a consequence we prove the ABPS Conjecture in some new cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal für die reine und angewandte Mathematik (Crelles Journal)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.