Abstract
Let R be a ring with identity, X(R) the set of all nonzero non-units of R and G(R) the group of all units of R. By considering left and right regular actions of G(R) on X(R), the following are investigated: (1) For a local ring R such that X(R) is a union of n distinct orbits under the left (or right) regular action of G(R) on X(R), if J n ≠ 0 = J n+1 where J is the Jacobson radical of R, then the set of all the distinct ideals of R is exactly {R, J, J 2,…, J n , 0}, and each orbit under the left regular action is equal to the one under the right regular action. (2) Such a ring R is left (and right) duo ring. (3) For the full matrix ring S of n × n matrices over a commutative ring R, the number of orbits under left regular action of G(S) on X(S) is equal to the number of orbits under right regular action of G(S) on X(S); the result also holds for the ring of n × n upper triangular matrices over R.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.