Abstract

Previous studies have reported the existence of two counter-rotating stellar disks in the early-type spiral galaxy NGC7217. We have obtained high-resolution optical spectroscopic data (R ~ 9000) with the new fiber-based Integral Field Unit instrument VIRUS-W at the 2.7m telescope of the McDonald Observatory in Texas. Our analysis confirms the existence of two components. However, we find them to be co-rotating. The first component is the more luminous (~ 77% of the total light), has the higher velocity dispersion (~ 170 km/s) and rotates relatively slowly (projected $v_{max}$ = 50 km/s). The lower luminosity second component, (~ 23% of the total light), has a low velocity dispersion (~ 20 km/s) and rotates quickly (projected $v_{max}$ = 150 km/s). The difference in the kinematics of the two stellar components allows us to perform a kinematic decomposition and to measure the strengths of their Mg and Fe Lick indices separately. The rotational velocities and dispersions of the less luminous and faster component are very similar to those of the interstellar gas as measured from the [OIII] emission. Morphological evidence of active star formation in this component further suggests that NGC7217 may be in the process of (re)growing a disk inside a more massive and higher dispersion stellar halo. The kinematically cold and regular structure of the gas disk in combination with the central almost dust-free morphology allows us to compare the dynamical mass inside of the central 500pc with predictions from a stellar population analysis. We find agreement between the two if a Kroupa stellar initial mass function is assumed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.