Abstract
In this paper, seasonal autoregressive integrated moving average (SARIMA) and regression with SARIMA errors (regression-SARIMA) models are developed to predict daily peak electricity demand in South Africa using data for the period 1996 to 2009. The performance of the developed models is evaluated by comparing them with Winter’s triple exponential smoothing model. Empirical results from the study show that the SARIMA model produces more accurate short-term forecasts. The regression-SARIMA modelling framework captures important drivers of electricity demand. These results are important to decision makers, load forecasters and systems operators in load flow analysis and scheduling of electricity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.