Abstract

SUMMARYProving the equivalence of successive, closely related versions of a program has the potential of being easier in practice than functional verification, although both problems are undecidable. There are three main reasons for this claim: (i) it circumvents the problem of specifying what the program should do; (ii) the problem can be naturally decomposed and hence is computationally easier; and (iii) there is an automatic invariant that enables to prove equivalence of loops and recursive functions in most practical cases. Theoretical and practical aspects of this problem are considered. Copyright © 2012 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.