Abstract

Monitoring the burning surface regression in ground static ignition tests is crucial for predicting the internal ballistic performance of solid rocket motors (SRMs). A previously proposed ultra-sparse computed tomography imaging method provides a possibility for real-time monitoring. However, sample shortages of SRMs highlights the need for monitoring accuracy, especially given the high cost associated with the design and development of SRM systems. Therefore, constructing datasets via regression simulations to compensate for SRM sample shortages is critical. To address this issue, we recommend adopting the level-set method to dynamically track the burning surface by solving partial differential equations (PDEs). The computational cost of numerical solution is prohibitive for scientific applications involving large-scale spatiotemporal domains. The physics-informed neural network (PINN) and neural operator have been used to accelerate the solution of PDE, showing satisfactory prediction performance and high computational efficiency. We designed a physics-guided network, named LS-PhyNet, that couples the potential physical mechanisms of burning surface regression into the deep learning framework. The proposed method is capable of encoding well-established traditional numerical discretization methods into the network architecture to leverage prior knowledge of underlying physics, thus providing the model with enhanced expressive power and interpretability. Experimental results prove that LS-PhyNet can better reproduce the burning surfaces obtained by numerical solution with only small data regimes, providing a new paradigm for real-time monitoring of burning surface regression transients during static ignition tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call