Abstract

Cardiac complications are the main cause of death in renal transplantation (RT), and left ventricular hypertrophy (LVH) may play an important role in these patients. The unfavorable genotype of the angiotensin-converting enzyme (ACE) gene has been associated with cardiovascular disease, including LVH. ACE inhibitors (ACEIs) reduce LVH, but little is known about the effects of ACEIs on LVH in RT patients with different insertion/deletion (I/D) genotypes of the ACE gene. We prospectively studied 57 stable nondiabetic RT patients with hypertension and echocardiographic LVH as well as a functional graft for 69.5 +/- 5.6 months. Patients randomly received either lisinopril 10 mg/day (group A, N = 29; 5 were excluded due to reversible acute renal failure) or placebo (group B, N = 28) for 12 months. Echocardiography (M-mode, 2-B, and color flow Doppler) was performed at baseline and 6 and 12 months later by the same examiner without previous knowledge of the genetic typing. The ACE genotype (I or D alleles) was ascertained by polymerase chain reaction (PCR; group A, DD = 10 and ID/II = 14; group B, DD = 15 and ID/II = 13). All patients maintained a good renal function (serum creatinine <2.5 mg/dL) during the follow-up and both groups received a similar proportion of antihypertensive drugs (beta-blockers 83 vs. 79%; Ca antagonists 66 vs. 68%; alpha1-adrenoreceptor antagonists 50 vs. 67%) during the study. As expected, mean arterial blood pressure and hemoglobin levels showed a higher percentage reduction in group A versus group B (-4 +/- 2.8 vs. 2.1 +/- 2.6%, P = 0.07, and -11.5 +/- 1.5 vs. -0.5 +/- 2.3%, P < 0.01, respectively). Group A patients showed a significantly higher decrement in LV mass index (LVMI) than group B at the end of follow-up, after adjusting for age, baseline LVMI, time after grafting and changes in systolic blood pressure, renal function, and hemoglobin levels (group A, -9.5 +/- 3.5% vs. group B, 3 +/- 3.2%, P < 0.05). As a result, 46% of group A and only 7% of group B patients showed a reduction of LVMI >/=15% (P < 0.01). The beneficial effect of lisinopril on LVMI reduction was more evident in DD patients (placebo DD, 8.4 +/- 4.1% vs. lisinopril DD, -7.2 +/- 5.3, P < 0.05), and a trend was observed in patients with other genotypes (placebo ID/II, 2.8 +/- 5.4% vs. lisinopril ID/II, -11.4 +/- 5%, P = 0.33). Lisinopril decreases LVM in renal transplant patients with hypertension and LVH, and the ACE gene polymorphism may predict the beneficial effect of this therapy. This finding may be important in targeting prophylactic interventions in this population.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call