Abstract
Calculating the statistical linear response of turbulent dynamical systems to the change in external forcing is a problem of wide contemporary interest. Here the authors apply linear regression models with memory, AR(p) models, to approximate this statistical linear response by directly fitting the autocorrelations of the underlying turbulent dynamical system without further computational experiments. For highly nontrivial energy conserving turbulent dynamical systems like the Kruskal-Zabusky (KZ) or Truncated Burgers-Hopf (TBH) models, these AR(p) models exactly recover the mean linear statistical response to the change in external forcing at all response times with negligible errors. For a forced turbulent dynamical system like the Lorenz-96 (L-96) model, these approximations have improved skill comparable to the mean response with the quasi-Gaussian approximation for weakly chaotic turbulent dynamical systems. These AR(p) models also give new insight into the memory depth of the mean linear response operator for turbulent dynamical systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.