Abstract
This paper deals with the study of the estimation of the functional regression operator when the explanatory variable takes its values in some abstract space of functions. The main goal of this paper is to establish the exact rate of convergence of the mean squared error of the functional version of the Nadaraya–Watson kernel estimator when the errors come from a stationary process under long or short memory and based on random functional data. Moreover, these theoretical results are checked through some simulations with regular (smooth) and irregular curves and then with real data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.