Abstract

Abstract: The use of inexpensive materials such as sorbents increases the competitive advantages of removing heavy metal ions, including nickel (II) ions, from aqueous solutions and wastewater. Such materials include active carbons – carbon sorbents. The oxidized carbon sorbent AD-05-2 and its original analogue have been used as the object of this research. The oxidation of carbon sorbent AD-05-2 was conducted using a solution of nitric acid and urea following a conventional method. Oxidation resulted in improvement of the textural characteristics of the carbon sorbent. The total pore volume increased, including the volume of micropores, which had a positive effect on the sorption properties of the obtained sample. This article studies the adsorption of nickel (II) ions by the oxidized carbon sorbent AD-05-2 and its original analogue. For both models, the total time of establishing adsorptive equilibrium in the system adsorbate–adsorbent was 4 hours, pH = 9,6, and the range of temperatures – 298–338 K. The obtained experimental data on the nickel (II) ion adsorption are processed in the software package Statgraphics Plus. Adsorption isotherms are described using parabolic regression models, which cover 98.86–99.99% of the experimental data. The adsorption of nickel (II) ions increases with temperature, as indicated by a higher value of the first derivative dA/dCp, apparently, due to accelerated external diffusion. A significant steep rise of the isotherms corresponds to the temperature of 338 K, which indicates the diffusion effect on the adsorption process. The estimates of the accuracy of regression models are provided by the mean square σ and absolute Δ errors. Autocorrelation of experimental data is estimated using Durbin – Watson (DW) test. The obtained regression models can be applied for calculating the optimum parameters of nickel (II) ions’ adsorption from aqueous solutions and process stream using the oxidized carbonic sorbent AD-05-2 and its original analog.

Highlights

  • Models, the total time of establishing adsorptive equilibrium in the system adsorbate–adsorbent was 4 hours, pH = 9,6, and the range of temperatures – 298–338 K

  • The obtained experimental data on the nickel (II) ion adsorption are processed in the software package Statgraphics Plus

  • The adsorption of nickel (II) ions increases with temperature, as indicated by a higher value of the first derivative dA/dCp, apparently, due to accelerated external diffusion

Read more

Summary

Номер модели

Об адекватности найденных регрессий экспериментальным данным можно судить по зависимостям, представленным на рис. 3, отражающим результат сопоставления значений величины расчетной адсорбции Ар по моделям (2)–(4). Изотермы адсорбции А, ммоль/г, ионов никеля (II) окисленным углеродным сорбентом АД-052 представлены на рис. 4 данных, адсорбция ионов никеля (II) окисленным углеродным сорбентом АД-05-2 так же, как и для исходного образца, растет с увеличением температуры. 3. Сравнение экспериментальных данных адсорбции Аэ ионов никеля (II) углеродным сорбентом АД-05-2 с расчетными значениями Ар по модели: (2) – при 298 К (а); (3) – при 318 К (b); (4) – при 338 К (с). 5, отражающим результат сопоставления расчетных значений величины расчетной адсорбции Ар ионов никеля(II) окисленным углеродным сорбентом АД-05-2 по моделям (5)–(7). 5. Сравнение экспериментальных данных адсорбции Аэ ионов никеля (II) окисленным углеродным сорбентом АД-05-2 с расчетными значениями Ар по модели:. Полученные модели регрессии могут быть использованы для расчета оптимальных параметров процесса адсорбции ионов никеля (II) из водных растворов и технологических сред с применением окисленного углеродного сорбента АД-05-2 и его исходного аналога

СПИСОК ЛИТЕРАТУРЫ
INFORMATION ABOUT THE AUTHORS
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call