Abstract

Some conditional models to deal with binary longitudinal responses are proposed, extending random effects models to include serial dependence of Markovian form, and hence allowing for quite general association structures between repeated observations recorded on the same individual. The presence of both these components implies a form of dependence between them, and so a complicated expression for the resulting likelihood. To handle this problem, we introduce, as a first instance, what Follmann and Wu (1995) called, in a different setting, an approximate conditional model, which represents an optimal choice for the general framework of categorical longitudinal responses. Then we define two more formally correct models for the binary case, with no assumption about the distribution of the random effect. All of the discussed models are estimated by means of an EM algorithm for nonparametric maximum likelihood. The algorithm, an adaptation of that used by Aitkin (1996) for the analysis of overdispersed generalized linear models, is initially derived as a form of Gaussian quadrature, and then extended to a completely unknown mixing distribution. A large scale simulation work is described to explore the behaviour of the proposed approaches in a number of different situations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.