Abstract

The quality of wafer production in semiconductor manufacturing cannot always be monitored by a costly physical measurement. Instead of measuring a quantity directly, it can be predicted by a regression method (virtual metrology). In this paper, a survey on regression methods is given to predict average silicon nitride cap layer thickness for the plasma-enhanced chemical vapor deposition dual-layer metal passivation stack process. Process and production equipment fault detection and classification data are used as predictor variables. Various variable sets are compared: one most predictive variable alone, the three most predictive variables, an expert selection, and full set. The following regression methods are compared: simple linear regression, multiple linear regression, partial least square regression, and ridge linear regression utilizing the partial least square estimate algorithm, and support vector regression (SVR). On a test set, SVR outperforms the other methods by a large margin, being more robust toward changes in the production conditions. The method performs better on high-dimensional multivariate input data than on the most predictive variables alone. Process expert knowledge used for a priori variable selection further enhances the performance slightly. The results confirm earlier findings that virtual metrology can benefit from the robustness of SVR, an adaptive generic method that performs well even if no process knowledge is applied. However, the integration of process expertise into the method improves the performance once more.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.