Abstract

Metacognition is an important component in basic science and clinical psychology, often studied through complex, cognitive experiments. While Signal Detection Theory (SDT) provides a popular and pervasive framework for modelling responses from such experiments, a shortfall remains that it cannot in a straightforward manner account for the often complex designs. Additionally, SDT does not provide direct estimates of metacognitive ability. This latter shortcoming has recently been sought remedied by introduction of a measure for metacognitive sensitivity dubbed meta-d′. The new sensitivity measure, however, further accentuates the need for a flexible modelling framework. In the present paper, we argue that a straightforward extension of SDT is obtained by identifying the model with the proportional odds model, a widely implemented, ordinal regression technique. We go on to develop a formal statistical framework for metacognitive sensitivity by defining a model that combines standard SDT with meta- d′ in a latent variable model. We show how this agrees with the literature on meta-d′ and constitutes a practical framework for extending the model. We supply several theoretical considerations on the model, including closed-form approximate estimates of meta- d′ and optimal weighing of response-specific meta-sensitivities. We discuss regression analysis as an application of the obtained model and illustrate our points through simulations. Lastly, we discuss a software implementation of the model in R. Our methods and their implementation extend the computational possibilities of SDT and meta- d′ and are useful for theoretical and practical researchers of metacognition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.