Abstract
We consider the problem of estimating an unknown function f in a regression setting with random design. Instead of expanding the function on a regular wavelet basis, we expand it on the basis { ψ jk (G),j,k} warped with the design. This allows us to employ a very stable and computable thresholding algorithm. We investigate the properties of this new basis. In particular, we prove that if the design has a property of Muckenhoupt type, this new basis behaves quite similarly to a regular wavelet basis. This enables us to prove that the associated thresholding procedure achieves rates of convergence which have been proved to be minimax in the uniform design case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.